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GT COMBUSTOR FLOW PHYSICS

e Key issue is flame stabilization by means of recirculating flow
of hot gases and chemically-active species to ensure continuous
ignition of fresh reactants.

e Three main mechanisms: 1) axial swirling air jet associated with

each fuel introduction; 2) sudden expansion of axial swirling
jets; 3) blockage due to radial air jets downstream of fuel sources.
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TURBULENCE MODELS SURVEYED

¢ Following models or modifications have been tested at P& W /
UTRC using RANS solvers on building block flows:

1. low-Re models (complex ducts);

2. RSTM or SMC (complex ducts, swirling and non-swirling
dump combustor);

3. RNG (pipe, backstep, 180 deg duct);

4. two-layer near-wall model (internal flows, heat transfer);

5. realizable algebraic stress model (swirling dump combustor);

6. compressible turbulence (shear layers, compression corner)

7.steady vs. unsteady-state solver (bluff-body, compression
corner)

* Major difficulty occurs with swirling flows, and failure to predict
downstream velocity components.

SWIRLING FLOWS

® Benchmark-quality data set provided by Johnson-Roback
co-annular combustor with swirl:
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® Poor agreement of CFD and data highlights need for improved
upstream BC specification (swirler geometry), 3-D, unsteady
analysis. Even SMC models fail to reproduce downstream
velocity profiles.
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UNSTEADINESS AND FLOW FIELD RESOLUTION

® RANS solvers can predict flow coherence (vortex shedding)
when run in an unsteady mode with small At.

® Same flow field computed in steady-state sense gives completely
unusable results.

® Example: V-gutter flow, computed by Durbin (1994):
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UNSTEADINESS AND FLOW FIELD RESOLUTION

® RANS solvers cannot predict flow oscillations at frequencies
near characteristic turbulence frequency.

e Example: Unsteady comp. corner flow of Dolling and Or (1983):
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® Separation bubble oscillations (at resonant frequency) not
resolved by RANS solver.

e Limitations of steady-state and unsteady-state RANS solvers set

by flow characteristic time scales.
True time-accurate solvers (LES, DNS) needed for prediction

of all relevant phenomena
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TURBULENT COMBUSTION MODELING

® Eddy Dissipation Concept Model, together with reaction exclusion regions, capable
of prediction gross flow features at near LBO conditions (Sturgess et al., 94-GT-433)
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® EDC model, however, fails to predict flame attachment at rich conditions

TURBULENT COMBUSTION MODELING

® Assumed-Pdf method of Girimaji (LaRC Workshop, 1991) used with
non-equilibrium kinetics model.
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¢ Example: N + O; < NO + O in extended Zeldovich model
® Results dependent on Ty ow, THigh, ¢, modeling of hh transport equation, etc.

® More testing needed
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PRESENT STATUS OF COMBUSTOR MODELING

® Corsair (Ryder, P&W) unstructured, unsteady flow solver

Temperature (°F) .

e Example: Time-dependent combustor flow using engineering
boundary conditions, compressor exit to turbine inlet

¢ Code currently includes standard k-€ and EBU combustion

model. Additional capabilities being added under "Subsonic
Emissions and Combustor Design Code” program with NASA LeRC.

PRESENT STATUS OF COMBUSTOR MODELING

e Example: Structured flow solver solution of Task 200
LBO Research Combustor:

30 1150 2500 3150 4200

® k-¢ turbulence model
e EBU combustion model for propane fuel
e 285,000 elements

84



PRESENT STATUS OF COMBUSTOR MODELING

® Example: Unstructured flow solver solution of Task 200
LBO Research Combustor:

APPRIXIMATELY 300,000 ELEMENTS
COMPUTED IN PARALLEL ON 10 WORKSTATIONS
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® k-¢ turbulence model
® EBU combustion model for propane fuel
® Approx. 300,000 elements

TURBULENCE RESEARCH NEEDS

® Modelling: Applications / validations of currently available
combustion models (B-pdf, Monte Carlo pdf, laminar flamelet)
to complex combustor geometry with jet fuel kinetics.

® Flow Physics: Accurate numerical description of mechanisms
responsible for flame holding, local extinction (LES, DNS);
contrast cold flows with heat release flows.
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